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Abstract: The method of LQ-moments represents one of many alternatives to established population parameter 
estimation techniques. It is used in applied research in such fields as construction, meteorology or hydrology. 
The present paper focuses on the use of LQ-moments in economics, specifically in wage distribution 
modelling. The aim of the study is to highlight the advantages of this approach over other methods of 
estimating the parameters of continuous probability distributions (i.e. those of L- and TL-moments), the 
theoretical probability distribution being represented by three-parameter lognormal curves. The calculation of 
sample LQ-moments and identification of the statistical characteristics (those of level, variability, skewness and 
kurtosis) of a continuous probability distribution are also an integral part of the paper. 
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1 Introduction 
The point estimation of parameters remains a widely 
discussed issue in the statistical literature, linear 
quantile (LQ) moments representing a more robust 
alternative to well-established methods of linear (L) 
and trimmed linear (TL) moments. Mudholkar 
& Hutson (1998), for example, introduce LQ-
moments as analogues of L-moments acquired by 
replacing the expectations by functionals inducing 
the median, Gastwirth estimator and trimean. The 
same estimators are dealt with by Shabri & Jemain 
(2006a, 2006b) who develop extended and 
improved class of LQ-moments that do not impose 
restrictions on the values of p and α, their 
combinations lying within the range 0–0.5. 
Respectively, they design a weighted kernel 
estimator for quantile function estimation and 
conduct Monte Carlo simulations to check the 
performance of the proposed estimators of the three-
parameter lognormal distribution. Shabri & Jemain 
(2010) also adapt the method of LQ-moments for a 
four-parameter kappa distribution considered as a 
combination of generalized distributions. Šimková 
& Picek (2017) derive L-, LQ- and TL-moments of 
generalized Pareto and extreme-value distributions 
up to the fourth order, using the first three moments 
to obtain estimators of their parameters. Performing 

a simulation study, they compare high-quantile 
estimates based on L-, LQ-, and TL-moments with 
the maximum likelihood estimate in terms of their 
respective sample mean squared errors. Ashour, El-
Sheik & Abu El-Magd (2015) derive both TL-and 
LQ-moments of the exponentiated Pareto 
distribution, applying them to estimate the unknown 
parameters. In addition to distribution classification 
and model selection criteria, Mudholkar & 
Natarajan (2002) deal with L and LQ measures of 
skewness and kurtosis, noting that the former 
measures occur only in the case of finite expectation 
distributions. David & Nagaraja (2003) also 
consider measurements of probability distributions 
and some quick parameter estimators. Abu El-Magd 
(2010) obtains TL- and LQ-moments of the 
exponentiated generalized extreme value 
distribution and utilizes them to estimate the 
unknown parameters, dealing with some specific 
cases such as L-, LH- and LL-moments. Deka, 
Borah & Kakaty, (2009) determine the best-fitting 
distribution to describe annual time series of 
maximum daily rainfall data from nine measuring 
stations in North-East India for the period 1966–
2007. GEV, generalized logistic, generalized Pareto, 
lognormal and Pearson distributions are fitted for 
this purpose employing L- and LQ-moments. Zin, 
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Jemain & Ibrahim (2009) and Bhuyan & Borah 
(2011) use the same methodology and the five 
above-mentioned probability distributions, the 
former researchers finding the best fitting 
distribution to analyse annual series of rainfall 
measured on the Malaysian peninsula between 1975 
and 2004. Zaher, El-Sheik & Abu El-Magd (2014) 
obtain TL-, L- and LQ-moments formulas for the 
Pareto distribution, comparing the fuzzy least-
squares estimator for the two-parameter distribution 
with other types of estimators. Parameter estimation 
using LQ-moments is the basis of research in 
quantile models for Zin & Jemain (2008), who 
apply thirteen methods of non-parametric quantile 
estimation to six types of extreme distributions, 
assessing their effectiveness. A general overview of 
recent research on L-, Tl- and LQ-moments is 
provided in Kandeel (2015). 
 
 

2 LQ-Moments 
The method of L-moments – linear functions of the 
expected values in order statistics – has been widely 
used in different areas of applied research such as 
construction, hydrology and meteorology. Its LQ 
variant is addressed in the present study. LQ-
moments are obtained by substituting the expected 
values with functionals inducing quick estimators 
such as the median, trimean and Gastwirth mean. 
They are easy to estimate and evaluate. Skewness 
and kurtosis measurements based on LQ-moments 
represent more appropriate and efficient alternatives 
to standard beta coefficients, the asymptotic 
distribution of LQ estimators proving their effective 
simplicity. Their application, particularly in 
hydrological analysis of extreme flood data values, 
is discussed in the statistical literature. Other 
potential uses are outlined in this paper. 
 
 
2.1 LQ-Moments of Probability Distribution 
Let X1, X2, …, Xn be a random sample from 
a continuous distribution with distribution and 
quantile functions FX(·) and QX(u) = FX

 ̶ 1(u), 
respectively, X1:n ≤ X2:n ≤ … ≤ Xn:n representing 
order statistics. Then the r-th L-moment λr is given 
as 
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Analogously, we define the r-th LQ-moment ξr as 
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where 0 ≤ α ≤ ½, 0 ≤ p ≤ ½ and 
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It is evident from equations (1) and (2) that the 
expected value E(·) at point τp,α(·) in the latter 
equation defines L-moments. Another 
generalization of L-moments, including the 
replacement of the expected value in equation (1), is 
possible by TL-moments. 

The linear combination τp,α, defined by equation 
(3) is a quick measure of the level of the random 
distribution of the order statistics Xr  ̶  k:r. Candidates 
for τp,α include functionals generating common 
quick estimators – 
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When sampling from a normal distribution, the 

LQ-Gastwirth estimator is the most efficient 
considering the possibilities given by equations 
(4)−(6). The following four LQ-moments of the 
random variable X are commonly used in practical 
applications such as probability density 
classification and parameter estimation 
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It is obvious that location measures τp,α(·) exist 
for any random variable X. Therefore, the r-th LQ-
moment always exists, and it is unique if the 
distribution function FX(·) is continuous. Moreover, 
the evaluation of LQ-moments of any continuous 
distribution can be simplified if the following 
applies: QX(·) = FX

 ̶ 1(·) being the quantile function 
of a random variable X, a quick measure of the level 
defined by equation (3) is equivalent to the equation 
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where )(1
: 

B rkr  denotes the corresponding α-th 

quantile of a beta distributed random variable with 
parameters r  ̶  k and k + 1. 

When constructing appropriate distribution 
models and estimating parameters, the coefficients 

of skewness and kurtosis 1
 and 2 , respectively, 

play an important role in terms of the classification 
of statistical distributions. Due to their drawbacks, 
however, alternative measures of skewness and 
kurtosis are used, including relatively recent ones 
such as 
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Quantile-based measures of kurtosis for symmetric 
distributions include 
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L-moment-based ratios τ3 and τ4 – L-skewness 

and L-kurtosis, respectively – are defined as 
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offering an alternative to 1
 and 2 . It is proved 

that τ3 meets the convex arrangement, τ4 
maintaining van Zwet's symmetric ordering.  

The skewness and kurtosis measures η3 and η4 
based on LQ-moments – LQ-skewness and LQ-
kurtosis – are defined as 
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It is necessary to note that both LQ-skewness and 
LQ-kurtosis exist for all distributions and are 
invariant in terms of location and scale. However, 
other analogous properties of τ3 and τ4 mentioned 
above remain unexplored for LQ-skewness η3 and 
LQ-kurtosis η4, their behaviour being now more 
thoroughly analysed. 

Another ratio measurement useful for comparing 
distributions with the usual origin and scale is an 
analogy of the coefficient of variation 
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where ξ1 and ξ2 are represented by equations (7) and 
(8). When modelling survival data, it is common 

practice to plot b1  against the sample coefficient 

of variation 
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in the ),( 1   plane to verify the model selection. 

 
 
2.2 Sample LQ-Moments 
LQ-moments can be estimated directly by 
estimating the quantiles of order statistics in 
combination with equation (11). The simplest 
quantile estimator suitable for this purpose is the 
one based on linear interpolation, available in 
standard statistical software packages. However, 
alternative estimators of quantiles can be used as 
well. 

Let X1:n ≤ X2:n ≤ … ≤ Xn:n be the sample order 
statistics. The quantile estimator Q(u) is then given 
by 
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where ε = n/u  ̶   [n/u] and n/ = n + 1. 

For random samples of sample size n, the r-th 
sample LQ-moment is expressed by the relationship 
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where )(ˆ :, X rkrp    is a quick estimator of the 

distribution of the order statistic Xr ̶ k:r in a random 
sample of size r. 

Specifically, the first four sample LQ-moments 
from equation (17) are given as 
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where the quick estimator )(ˆ :, X rkrp    of the level 

of order statistics Xr ̶ k:r is described by relationship 
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where 0 ≤ α ≤ ½, 0 ≤ p ≤ ½, )(1

: 
B rkr  is the α-th 

quantile of the random variable with a beta 
distribution with parameters r  ̶  k a k + 1, and 

)(ˆ QX
 denotes an estimator using linear 

interpolation given by equation (16). The 

calculation of sample LQ-moment ̂r
 is as follows 
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being simplified using quantile )(1
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be easily obtained from statistical spreadsheets. 
Explicit schemes for the calculation of LQ-

moments are presented, the three quick estimators – 
median (p = 0, α = ·), trimean (p = 1/4, α = 1/4) and 
Gastwirth (p = 0,3, α = 1/3) – are used for 

)(ˆ :, X rkrp    given by equation (22). The calculation 

of the first four sample LQ-moments from equation 
(17) is simplified using pyramid schemes. 

Sample LQ-skewness and LQ-kurtosis 
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can be used to identify η3 and η4 and to estimate 
parameters. 
 
 
2.3 Large Sample Theory 
Sample LQ-moments depend on the choice of quick 
and quantile estimators, their asymptotic normality, 
however, being consistent with the theory of linear 
order statistics of large samples. In order to develop 
expressions for the large sample mean and variance 
of sample LQ-moments, we shall limit ourselves to 
the Q class of quantile functions Q meeting the 
following conditions:  

 the inverse function QX(u) = FX
 ̶ 1(u) is 

defined exclusively for 0 < u < 1; 

 Q(·) is twice differentiable on the interval 
(0, 1) with a continuous second derivative 
Q//(·) on the same interval; 

 Q/(·) > 1 for 0 < u < 1. 
Let us consider 0 < u1 < u2 < … < uk < 1, 

assuming the above conditions (1) ̶ (3) are fulfilled. 
Then 
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is asymptotically normal with a vector of expected 
values [Q(u1), Q(u2), …, Q(uk)] as well as with 
covariances 
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To create asymptotic expressions for covariances of 
LQ-moments, we will first obtain 
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so that 0 < u1 < u2 < … < u6 < 1, where )(1
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represents the α-th quantile of a random variable 
with a beta distribution with parameters r  ̶  k and 
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The covariance between the estimated quick 
estimators of order statistics is defined as 
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The r-th sample LQ-moment  
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has an asymptotically normal distribution with 
expected value ξr. For r ≤ s, covariances of LQ-
moments are given by equation 
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by equation (25) and u1, u2, …, u6 are specified 
above. For r = s, we obtain the variance of the r-th 
sample LQ-moment  

.̂r

 

 
As n → ∞, sample measures of LQ-skewness 

̂3

 

and LQ-kurtosis 

̂4

 

have a two-dimensional normal distribution with 
the vector of expected values (η3, η4) and 
 

,ˆ)/ˆ()ˆ(
2

233  VarVar
 

(27)

 
 )ˆˆ(ˆ)ˆ,ˆ([)ˆ,ˆ(

4234343 CovCovCov

 (28)
,ˆ)]/ˆ(ˆˆ)ˆ,ˆ(ˆ 2

2243324  VarCov
 

 
,ˆ)/ˆ()ˆ(

2

244  VarVar
 

(29)

 
where 
 

)ˆ,ˆ()ˆ(  rrr
CovVar

 
 

 
and variances and covariances indicate the right side 
of the equation (26). 
 
 
2.4 Application to Normal Distribution 
We consider a random sample from a normal 
distribution and compare the use of the median, 
trimean and Gastwirth estimators when estimating 
LQ-skewness and LQ-kurtosis. Then the estimators 
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and 
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given by equation (23) have a common normal 
distribution with the corresponding expected value 
vectors 
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and covariance matrices 
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We can see from equations (31) that 

̂3

 

and  

̂4  
are asymptotically uncorrelated for each of the 
above-mentioned quick estimators. It is also obvious 
that we prefer Gastwirth estimator to median and 
trimean ones in terms of skewness and kurtosis 
estimation in the case of large samples from an 
(almost) normal distribution. 
 
 
2.5 Application to Lognormal Distribution 
LQ estimators for the three-parameter lognormal 
distribution behave similarly to L-moment 
estimators. We get the following expressions for 
LQ-moments of the above distribution from 
equations (7)  ̶(9) and (13) 
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LQ-parameter estimators 
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represent the solution of equations (7)–(9) in 
combination with equations (32) ̶ (34) for μ, σ and θ, 
where we replace ξr with 
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Conducting regression analysis, we obtain the 
following approximate relationship, allowing for 
estimation of  
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for |η3| ≤ 1,0 a |k| ≤ 2,64 
 

.ˆ1015,0ˆ1744,0ˆ7396,0ˆ1684,2ˆ 7

3

5

3

3

33  (35)

 

Once we get the value 

,̂
 

we can also obtain estimates 

 ˆandˆ
 

using equations (33) and (32). 
 
 
2.6 Appropriateness of the Model 
It is also necessary to assess the suitability of the 
constructed model or choose another model from 
several alternatives, applying a criterion which can 
be the sum of absolute deviations of the observed 
and theoretical frequencies for all intervals 
 

S n ni ii

k
   


 

1

 
(36)

 

or criterion 2 
 


 




k

i n i

n ini

1
,

)( 2
2  

(37)

 
where ni are the observed frequencies in individual 

intervals, i are the theoretical probabilities 
of statistical unit membership in the i-th interval, n 
is the total sample size of the corresponding 

statistical file, n  i are theoretical frequencies in 
individual intervals, i = 1, 2, ..., k, and k is the 
number of intervals. 

The appropriateness of the wage distribution 
curve is not a general mathematical-statistical issue 
for testing the null hypothesis 
 

H0: the sample coming from the supposed 
theoretical distribution, 

 
against the alternative hypothesis 
 

H1: non H0,  
 
because in wage distribution goodness of fit testing 
we often work with large samples, tests usually 
leading to the null hypothesis rejection. This results 
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not only from the lower test power at a given 
significance level but also from the test construction 
itself. The smallest distribution deviations revealed 
by the test being of no practical significance, the 
general consistency between the model and reality 
proves sufficient for us to “borrow” the wage 
distribution curve, allowing for the tentative use of 

the 2 test criterion. Relying on experience and 
logical insights, however, the model suitability 
assessment remains to a large extent subjective. 
 
 

3 Results and Discussion 
The research database – consisting of employees 
who were working in the Czech Republic over the 
period 2009–2016 – is broken down by various 
demographic and socio-economic factors. The 
research variable is the gross monthly (nominal) 
wage (in CZK). Data were drawn from the official 
website of the Czech Statistical Office. They are in 
the form of the interval frequency distribution (a 
total of 328 wage distributions) since the data on 
individual employees are not available.  

Tables 1‒3 present parameter estimates obtained 
using the three methods of point parameter 
estimation and the S-criterion. Generally, the 
method of LQ-moments yielded the best results, 
deviations occurring mainly at both ends of the 
wage distribution due to extreme open intervals. 
With respect to total wage distribution sets, LQ-
moments always give the most accurate outcomes in 
terms of the S-criterion. In the research of all 328 
wage distributions, the method of TL-moments 
produced the second most accurate results in more 
than half of the cases, deviations occurring again 
especially at both ends of the distribution. The 
above tables indicate that TL-moments brought the 
second most accurate results in terms of all total sets 
of wage distributions for the Czech Republic in the 
period 2009–2016, the method of L-moments 
yielding the third most accurate outcomes in most 
cases.  
 
 
 
 
 

Table 1: Parameter estimates obtained using LQ-
moments and S-criterion values for total wage 
distribution in the Czech Republic 

Year
Parameter estimation 

µ σ2 θ 
2009 9.059 747 0.630 754 9,065.52 
2010 9.215 324 0.581 251 8,552.10 
2011 9.277 248 0.573 002 8,872.54 
2012 9.313 803 0.577 726 9,382.66 
2013 9.382 135 0.680 571 10,027.84 
2014 9.438 936 0.688 668 10,898.39 
2015 9.444 217 0.703 536 10,640.53 
2016 9.482 060 0.681 258 10,616.80 

 

Year S-criterion 
2009  108,437.01  
2010  146,509.34  
2011  137,422.05  
2012  149,144.68  
2013  198,670.74  
2014  206,698.93  
2015  193,559.55  
2016  202,367.04  

Source: Own research 

 
Table 2: Parameter estimates obtained using TL-
moments and S-criterion values for total wage 
distribution in the Czech Republic 

Year
Parameter estimation 

µ σ2 θ 
2009 9.017 534 0.608 369 7,664.46 
2010 9.241 235 0.507 676 6,541.16 
2011 9.283 399 0.515 290 6,977.45 
2012 9.283 883 0.543 225 7,868.21 
2013 9.387 739 0.601 135 7,902.64 
2014 9.423 053 0.624 340 8,754.64 
2015 9.431 478 0.631 013 8,684.51 
2016 9.453 027 0.621 057 8,746.20 

 

Year S-criterion 
2009  133,320.79  
2010  248,438.78  
2011  231,978.79  
2012  216,373.24  
2013  366,202.87  
2014  357,668.48  
2015  335,999.20  
2016  323,851,84  

Source: Own research 
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Table 3: Parameter estimates obtained using L-
moments and S-criterion values for total wage 
distribution in the Czech Republic 

Year 
Parameter estimation 

µ σ2 θ 
2009 9.741 305 0.197 395 2.07 
2010 9.780 008 0.232 406 0.22 
2011 9.833 604 0.228 654 0.27 
2012 9.890 594 0.210 672 0.59 
2013 9.950 263 0.268 224 0.16 
2014 10.017 433 0.264 124 0.19 
2015 10.019 787 0.269 047 0.20 
2016 10.033 810 0.269 895 0.20 

 

Year S-criterion 
2009  248,331.74  
2010  281,541.41  
2011  311,008.23  
2012  325,055.67  
2013  370,373.62  
2014  391,346.02  
2015  359,736.37  
2016  389,542.21  

Source: Own research 

 
Figure 1: Development of sample and 
theoretical median of three-parameter 
lognormal curves with parameters estimated 
using different methods of estimation 
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Figure 2: Development of probability density 
function of three-parameter lognormal curves 
with parameters estimated using LQ-moments 
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Figure 3: Development of probability density 
function of three-parameter lognormal curves 
with parameters estimated using TL-moments 
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Figure 4: Development of probability density 
function of three-parameter lognormal curves 
with parameters estimated using L-moments 
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Figure 1 also gives some idea of the 

accuracy of point parameter estimation 
methods, showing the development of the 
sample median of gross monthly wage for the 
total set of all employees in the Czech Republic 
over the period 2009–2016 and the 
corresponding theoretical median of model 
three-parameter lognormal curves with 
parameters estimated by three various methods. 
The figure indicates that the curve showing the 
development of the theoretical median of the 
three-parameter lognormal distribution with 
parameters estimated using LQ-moments 
adheres the closest to that showing the course of 
the sample median. The other two curves 
tracing the development of the theoretical 
median of three-parameter lognormal curves 
with parameters estimated by the methods of 
TL- and L-moments are relatively distant from 
the course of the sample wage distribution 
median. 

Figures 2–4 illustrate the development of the 
probability density function of three-parameter 
lognormal curves with parameters estimated by 
all three methods of LQ-, TL- and L-moments, 
again representing the course of model 
distributions of total wages earned by all 
employees in the Czech Republic between 2009 
and 2016. We can see that the shapes of 
lognormal curves with parameters estimated 
using TL- and L-moments are similar to each 
other, while being markedly different from 
those whose parameters were estimated by the 
method of LQ-moments (cf. Figs. 3, 4 and 2, 
respectively). 

 
 

4 Conclusion 
The present paper deals with an alternative moment 
analysis of probability distributions. The method of 
LQ-moments is compared with those of L- and TL-
moments, particularly in terms of their parameter 
estimation accuracy, using the sum of all absolute 
deviations of the observed and theoretical 
frequencies for all intervals as a criterion. The 
higher accuracy of LQ-moments approach was 
proved by examining the set of 328 wage 
distributions, advantages of TL-moments compared 
to L-moments being also confirmed. The values of 

the 2 criterion having been calculated for each 
wage distribution, the test always led to the rejection 
of the zero hypothesis about the supposed shape of 
the wage distribution because of the typically large 
sample sizes.  
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